Proofs and computations
Helmut Schwichtenberg
(j-w.w. Kenji Miyamoto)

Mathematisches Institut, LMU, Miinchen

Humboldt-Kolleg “Proof”, Universitat Bern,
9.-13. September 2013

What more do we know if we have proved a theorem by restricted
means rather than knowing that it is true? (G. Kreisel)

» Proofs can have (hidden) computational content.

» Extract such computational content from proofs.
Tools
» Computationally relevant and irrelevant logical connectives.

» Inductively/coinductively defined predicates.

Classical and constructive proofs

» View classical logic as a fragment of constructive logic.
» Use both 3,A and its “weak” variant §IXA = vV, oA

Proof transformations:
> From I~ V.3, A obtain I- ¥, 3, A.

Dickson’s lemma

Vegdij(i <jAF(i) < F() A gli) < g())).

Proof by a simplification of Nash-Williams’ (1963) “minimal bad
sequence” argument for Higman’s lemma. It is not constructive
since it requires determining the minimum of an infinite set.

Guarded general recursion with measure u:

FixGtt = Gx(\,F, yG(py < px)),
flfof‘F =e.

Let F.xG := F,FxGtt (general recursion). Term extracted from
the (transformed) proof of Dickson's lemma:

hj if ff <Hhi
)\f,gffO()\nfgn(Af,§7hff(i + 1)(/\j,h &jh if gj < gi)))
(i,j) else

v

The 3 F's correspond to 3 uses of the minimum principle.

v

Higher-order term: F has a type-3 argument (is type-2).

v

It is unlikely that a human would write such a program.

v

Experiments: better than brute-force search.

Ishihara's trick. Let f be a linear map from a Banach space X into
a normed linear space Y, and (un) a sequence in X converging to
0. ThenforO<a<b

Am(a < [fum|) or Vm([fum| < b).

Proof. Let M be a modulus of convergence of (uny,) to 0. Call m a
hit on nif M, < m < M,11 and a < |fup|. Define h: N — N:

» h, =0 if for all N < n there is no hit;
» h, = m+ 2 if at n for the first time we have a hit, with m;
» h, =1 if there is an n’ < n with a hit.

To define h use g: N — B:

a < |fum| if gm
|fum| < b otherwise.

From h define a Cauchy sequence (v,) in X:

» v, =0if h, =0;

> vp=(n+ Dupy if hy =m+2;

> V, = Vy_1 if h, = 1.
By completeness of X: limit v of (v,). Pick ng s.t. |[fv| < npa.
Assume first hit at n > ng, with value m. Then v=v,=(n+1)up,,

(n+1)a < (n+1)|fum| = |(n+1)(fum)| = |£((n+1)um)| = [fv] < na,

a contradiction. Hence beyond ng there is no first hit.
» Case Vp<n,(hp = 0). Then: no hit, hence |fu,| < b for all n.

» Else: hit before ng, hence a < |fu,| for some n.

[f,us,M,a,al,k]
[let g
([n]negb
(cAC([nO] cApproxSplitRat a a0 lnorm(f(us n0))k)n))
[case (H g M
(cRealPosRatBound
lnorm(f ((cXCompl xi) ((V xi)g M us)
([k0]abs (IntS(2*k0)max 0))))
a))
(Zero -> False)
(Succ n0 -> True)]]

XCompl:
VL57M(Vk,m>n2Mk ”Un_um” < 1/2k — avvk,nsz ”V_Un” < 1/2k)

RealPosRatBound: V ,~03n,x < na
ApproxSplitRat: Va7b7x7k(1/2k <b—a—x<bva<x)
AC: Vim3pR(m, p) = 3gVmR(m, g(m)).

Computing with infinite data

Real number
» Type-1: Cauchy sequence of rationals (with modulus).
» Type-0: “Stream” of signed digits {—1,0,1}.
Real function
> Type-2: type-1 reals — reals.
> Type-1: type-0 reals — reals.

Example: average of two reals

Ulrich Berger and Monika Seisenberger (2009, 2010).

» Extraction from a proof dealing with abstract reals.

» Proof involving coinduction of the proposition that any two
reals in [—1, 1] have their average in the same interval.

» B & S informally extract a Haskell program from this proof,
which works with stream representations of reals.

Here: formalization of the proof, and machine extraction of its
computational content.

Average of two reals in [—1,1]:

Vey(x,y € [-1,1] —

ery e [-1,1]).

Has type-2 content, since “x is Cauchy sequence” is of type 1.
Want: type-0 representation.

Average: V5, (Rx — Ry — R%)

How to define predicates with type-0 content? Inductive predicates.

Semantics

> Base types: “ideals” (possibly infinite) in free algebras.
» Function types: Scott-Ershov domains of partial continuous
functionals.

Free algebra J of intervals: constructors

I:J (for [-1,1]),
C:SD — J — J (for left, middle, right half).

Ideals in J:
» infinite path (stream, cototal ideal),

» finite interval (total ideal).

Define inductively a unary predicate / by the clauses

d
10, V(= 15T

)

and the least-fixed-point axiom (induction).

I's generation trees: ideals in J. Reason: clauses ~ constructors
I:J, C:SD—~J—J.

Dual: J
VIC(O = x = 0V 3 34(ly Ax = %))

and the greatest-fixed-point axiom (coinduction).

Content of least- and greatest-fixed-point axioms: R and “°R.
»RjiJ=17—=>(SD—=J—=>7—=7)=T.

» The conversion rules for R with total ideals as recursion
arguments work from the leaves towards the root, and
terminate because total ideals are well-founded.

» For cototal ideals (streams) a similar operator is available to
define functions with cototal ideals as values: corecursion.

» “Ri:7 = (1= U+SDx (J+7))—=J (U unit type).
» Conversion rule
ORTNM > [case (MN)YFTSPX(I+7) of
inl _— 1|
inr(d, z) + Cy[case 217 of
inl _+— 1|
inr u” — ““RjuM]].

CauchySds: Vg 1)(Vnda(a — 1/2" < x < a+1/27) = “Ix).

Proof via coinduction. Content:

[as]
(CoRec (nat=>rat)=>iv)as
([as0]
Inr[let d
[case (as0(Succ(Succ Zero)))
(k#p ->
[case k
(p0 —> [if (SZero(SZero p0)<p) Mid Rht])
(0 -> Mid)
(IntN po ->

[if (SZero(SZero p0)<=p) Mid Lft])1)]
(d@(InR nat=>rat iv)
([n]2*as0(Succ n)-SDToInt d))])

Haskell translation

Average: V. , (“Ix — “ly — CO/%).

Proof via coinduction.

Define (1/2)v/2 and 3/4 as terms, by their Cauchy sequences.

(terms-to-haskell-program

"~/temp/average.hs"

(1ist (list neterm-average "neterm_average")
(1ist neterm-cauchysds "neterm_cauchysds")
(1ist halfsqrttwo "halfsqrttwo")
(1ist threebyfour "threebyfour")))

Experiment

*Main> takelIv 9 (neterm_average
(neterm_cauchysds halfsqrttwo)
(neterm_cauchysds threebyfour))

[lthtll , ltht" s ||Midll s IIMidll , IILftll , Itht“ , llLftIl s ||Midll s ||Rht Il]

1 1 1 1 1 1
728515625 = — 4+ - — — 4 — 4
0.728515625 277 32 61 128 512
V2/243/4

0.728553...
2

A theory of computable functionals, TCF

» A variant of HAY.
> Intended model:
» Base types: “ideals” (possibly infinite) in (non-flat information
systems for) free algebras.
» Function types: Scott-Ershov domains of partial continuous
functionals.
» Constants for (partial) computable functionals, defined by
equations.
» Inductively and coinductively defined predicates. (Co)totality

for base types (co)inductively defined.

Relation to type theory

v

Main difference: partial functionals are first class citizens.

v

“Logic enriched”: Formulas and types kept separate.

v

Minimal logic: —,V only. Eq(x, y) (Leibniz equality), 3, v, A
inductively defined (Martin-Lof).

1 := Eq(False, True). Ex-falso-quodlibet: L — A provable.

v

Decorations

—,V and —"¢ V"¢ for removal of abstract data, and fine-tuning.
Introduction rules for —™¢, V¢ restricted to “non-computational”
(assumption or object) variables.

Example: decorating disjunction.
» AV B is inductively defined by the clauses

A— AV B, B— AVB
with least-fixed-point axiom
AVB—(A—P)—(B—P)— P.

» Decoration leads to variants V4, V1, v*, vt (d for “double”,
| for “left”, r for “right” and u for “uniform™).

Decorating disjunction

Clauses:
A—=CAVIB, B¢ AVIB,
A=CAVIB, B-™AV!B,
A" AVEB, B —°AV'B,
A= AVEB, B =™ AVYB.

Least-fixed-point axioms:

AVI B ¢ (A= P) =° (B —° P) =° P,
AV B ¢ (A = P) ¢ (B =" P) =° P,
AVE B —=¢ (A =" P) = (B—=°P)—=°P,
AVY B =€ (A= P) = (B =" P) =°P.

Decorating the existential quantifier

» A is inductively defined by the clause
V(A — 34A)
with least-fixed-point axiom
A =V (A— P)— P.

» Decoration leads to variants 34, 3", 3, 3=,

V(A = 344), 39A S V(A= P) = P,
V(A = 3L A), FA V(A= P)— P,
Vi(A — 3L A), FA->V(A— P)— P,

VIC(A e JUA), 3UA R VIS(A R P) 5 P

Realizability interpretation

» Define a formula tr A, for A a formula and t a term

r(A—B) =Vi(xrA — txrB),
r(A—="B):=Vy(xrA — trB),
r (V<A) = Vi(txr A),
r (Vi°A) =Vy(trA).

» From a proof M we can extract its computational content, a
term et(M).

» Soundness theorem:
If M proves A, then et(M) r A can be proved.

Further work

Type-0 representation of (uniformly) continuous real functions:
“Read-Write tree”. Output signed digit after reading finitely many
(possibly 0) input signed digits, and carry on.

> Based on work of Ulrich Berger.

» Requires “nested” algebras and simultaneous
inductively/coinductively defined predicates.

» Details in forthcoming thesis of Kenji Miyamoto.

References

v

U. Berger, From coinductive proofs to exact real arithmetic.
CSL 20009.

H. Ishihara, A constructive closed graph theorem. 1990

v

v

K. Miyamoto and H.S., Program extraction in exact real
arithmetic. MSCS 2012.

K. Miyamoto, F. Nordvall Forsberg and H.S., Program
extraction from nested definitions. ITP 2013

v

v

H.S. and S.S. Wainer, Proofs and Computations. Perspectives
in Logic, ASL & Cambridge UP, 2012.

