
Proofs and computations

Helmut Schwichtenberg
(j.w.w. Kenji Miyamoto)

Mathematisches Institut, LMU, München

Humboldt-Kolleg “Proof”, Universität Bern,
9.-13. September 2013

What more do we know if we have proved a theorem by restricted
means rather than knowing that it is true? (G. Kreisel)

I Proofs can have (hidden) computational content.

I Extract such computational content from proofs.

Tools

I Computationally relevant and irrelevant logical connectives.

I Inductively/coinductively defined predicates.

Classical and constructive proofs

I View classical logic as a fragment of constructive logic.

I Use both ∃xA and its “weak” variant ∃̃xA := ¬∀x¬A.

Proof transformations:

I From ` ∀x ∃̃yA obtain ` ∀x∃yA.

Dickson’s lemma

∀f .g ∃̃i ,j(i < j ∧ f (i) ≤ f (j) ∧ g(i) ≤ g(j)).

Proof by a simplification of Nash–Williams’ (1963) “minimal bad
sequence” argument for Higman’s lemma. It is not constructive
since it requires determining the minimum of an infinite set.

Guarded general recursion with measure µ:

F+
µ xG tt = Gx(λyF+

µ yG (µy < µx)),

F+
µ xG ff = ε.

Let FµxG := F+
µ xG tt (general recursion). Term extracted from

the (transformed) proof of Dickson’s lemma:

λf ,gFf 0(λnFgn(λi ,ξ,hFf (i + 1)(λj ,h

hj if fj < fi

ξjh if gj < gi

〈i , j〉 else

)))

I The 3 F ’s correspond to 3 uses of the minimum principle.

I Higher-order term: F has a type-3 argument (ξ is type-2).

I It is unlikely that a human would write such a program.

I Experiments: better than brute-force search.

Ishihara’s trick. Let f be a linear map from a Banach space X into
a normed linear space Y , and (um) a sequence in X converging to
0. Then for 0 < a < b

∃m(a ≤ ||fum||) or ∀m(||fum|| ≤ b).

Proof. Let M be a modulus of convergence of (um) to 0. Call m a
hit on n if Mn ≤ m < Mn+1 and a ≤ ||fum||. Define h : N→ N:

I hn = 0 if for all n′ ≤ n there is no hit;

I hn = m + 2 if at n for the first time we have a hit, with m;

I hn = 1 if there is an n′ < n with a hit.

To define h use g : N→ B:{
a ≤ ||fum|| if gm

||fum|| ≤ b otherwise.

From h define a Cauchy sequence (vn) in X :

I vn = 0 if hn = 0;

I vn = (n + 1)um if hn = m + 2;

I vn = vn−1 if hn = 1.

By completeness of X : limit v of (vn). Pick n0 s.t. ||fv || ≤ n0a.
Assume first hit at n > n0, with value m. Then v=vn=(n+1)um,

(n+1)a ≤ (n+1)||fum|| = ||(n+1)(fum)|| = ||f ((n+1)um)|| = ||fv || ≤ na,

a contradiction. Hence beyond n0 there is no first hit.

I Case ∀n<n0(hn = 0). Then: no hit, hence ||fun|| ≤ b for all n.

I Else: hit before n0, hence a ≤ ||fun|| for some n.

[f,us,M,a,a0,k]

[let g

([n]negb

(cAC([n0]cApproxSplitRat a a0 lnorm(f(us n0))k)n))

[case (H g M

(cRealPosRatBound

lnorm(f((cXCompl xi)((V xi)g M us)

([k0]abs(IntS(2*k0)max 0))))

a))

(Zero -> False)

(Succ n0 -> True)]]

XCompl:

∀us,M(∀k,m>n≥Mk
||un−um|| ≤ 1/2k → ∃v∀k,n≥Mk

||v−un|| ≤ 1/2k)

RealPosRatBound: ∀x ,a>0∃nx ≤ na
ApproxSplitRat: ∀a,b,x ,k(1/2k ≤ b − a→ x ≤ b ∨ a ≤ x)
AC: ∀m∃pR(m, p)→ ∃g∀mR(m, g(m)).

Computing with infinite data

Real number

I Type-1: Cauchy sequence of rationals (with modulus).

I Type-0: “Stream” of signed digits {−1, 0, 1}.
Real function

I Type-2: type-1 reals 7→ reals.

I Type-1: type-0 reals 7→ reals.

Example: average of two reals

Ulrich Berger and Monika Seisenberger (2009, 2010).

I Extraction from a proof dealing with abstract reals.

I Proof involving coinduction of the proposition that any two
reals in [−1, 1] have their average in the same interval.

I B & S informally extract a Haskell program from this proof,
which works with stream representations of reals.

Here: formalization of the proof, and machine extraction of its
computational content.

Average of two reals in [−1, 1]:

∀x .y (x , y ∈ [−1, 1]→ x + y

2
∈ [−1, 1]).

Has type-2 content, since “x is Cauchy sequence” is of type 1.
Want: type-0 representation.

Average : ∀ncx .y (Rx → Ry → R
x + y

2
).

How to define predicates with type-0 content? Inductive predicates.

Semantics

I Base types: “ideals” (possibly infinite) in free algebras.

I Function types: Scott-Ershov domains of partial continuous
functionals.

Free algebra J of intervals: constructors

I : J (for [−1, 1]),

C : SD→ J→ J (for left, middle, right half).

Ideals in J:

I infinite path (stream, cototal ideal),

I finite interval (total ideal).

Define inductively a unary predicate I by the clauses

I 0, ∀ncx ∀d(Ix → I
x + d

2
)

and the least-fixed-point axiom (induction).

I ’s generation trees: ideals in J. Reason: clauses ∼ constructors

I : J, C : SD→ J→ J.

Dual:

∀ncx (coIx → x = 0 ∨ ∃ry∃d(coIy ∧ x =
y + d

2
))

and the greatest-fixed-point axiom (coinduction).

Content of least- and greatest-fixed-point axioms: R and coR.

I RτJ : J→ τ → (SD→ J→ τ → τ)→ τ .

I The conversion rules for R with total ideals as recursion
arguments work from the leaves towards the root, and
terminate because total ideals are well-founded.

I For cototal ideals (streams) a similar operator is available to
define functions with cototal ideals as values: corecursion.

I coRτJ : τ → (τ → U + SD× (J + τ))→ J (U unit type).

I Conversion rule

coRτJNM 7→ [case (MN)U+SD×(J+τ) of

inl 7→ I |
inr〈d , z〉 7→ Cd [case zJ+τ of

inl 7→ I |
inr uτ 7→ coRτJuM]].

CauchySds : ∀ncx∈[−1,1](∀n∃a(a− 1/2n ≤ x ≤ a + 1/2n)→ coIx).

Proof via coinduction. Content:

[as]

(CoRec (nat=>rat)=>iv)as

([as0]

Inr[let d

[case (as0(Succ(Succ Zero)))

(k#p ->

[case k

(p0 -> [if (SZero(SZero p0)<p) Mid Rht])

(0 -> Mid)

(IntN p0 ->

[if (SZero(SZero p0)<=p) Mid Lft])])]

(d@(InR nat=>rat iv)

([n]2*as0(Succ n)-SDToInt d))])

Haskell translation

Average : ∀ncx ,y (coIx → coIy → coI
x + y

2
).

Proof via coinduction.

Define (1/2)
√

2 and 3/4 as terms, by their Cauchy sequences.

(terms-to-haskell-program

"~/temp/average.hs"

(list (list neterm-average "neterm_average")

(list neterm-cauchysds "neterm_cauchysds")

(list halfsqrttwo "halfsqrttwo")

(list threebyfour "threebyfour")))

Experiment

*Main> takeIv 9 (neterm_average

(neterm_cauchysds halfsqrttwo)

(neterm_cauchysds threebyfour))

["Rht","Rht","Mid","Mid","Lft","Rht","Lft","Mid","Rht"]

0.728515625 =
1

2
+

1

4
− 1

32
+

1

64
− 1

128
+

1

512

0.728553... =

√
2/2 + 3/4

2

A theory of computable functionals, TCF

I A variant of HAω.
I Intended model:

I Base types: “ideals” (possibly infinite) in (non-flat information
systems for) free algebras.

I Function types: Scott-Ershov domains of partial continuous
functionals.

I Constants for (partial) computable functionals, defined by
equations.

I Inductively and coinductively defined predicates. (Co)totality
for base types (co)inductively defined.

Relation to type theory

I Main difference: partial functionals are first class citizens.

I “Logic enriched”: Formulas and types kept separate.

I Minimal logic: →,∀ only. Eq(x , y) (Leibniz equality), ∃, ∨, ∧
inductively defined (Martin-Löf).

I ⊥ := Eq(False,True). Ex-falso-quodlibet: ⊥ → A provable.

Decorations

→,∀ and →nc, ∀nc for removal of abstract data, and fine-tuning.
Introduction rules for →nc,∀nc restricted to “non-computational”
(assumption or object) variables.

Example: decorating disjunction.

I A ∨ B is inductively defined by the clauses

A→ A ∨ B, B → A ∨ B

with least-fixed-point axiom

A ∨ B → (A→ P)→ (B → P)→ P.

I Decoration leads to variants ∨d,∨l,∨r,∨u (d for “double”,
l for “left”, r for “right” and u for “uniform”).

Decorating disjunction

Clauses:

A→c A ∨d B,

A→c A ∨l B,

A→nc A ∨r B,

A→nc A ∨u B,

B →c A ∨d B,

B →nc A ∨l B,

B →c A ∨r B,

B →nc A ∨u B.

Least-fixed-point axioms:

A ∨d B →c (A→c P)→c (B →c P)→c P,

A ∨l B →c (A→c P)→c (B →nc P)→c P,

A ∨r B →c (A→nc P)→c (B →c P)→c P,

A ∨u B →c (A→nc P)→c (B →nc P)→c P.

Decorating the existential quantifier

I ∃xA is inductively defined by the clause

∀x(A→ ∃xA)

with least-fixed-point axiom

∃xA→ ∀x(A→ P)→ P.

I Decoration leads to variants ∃d, ∃l,∃r,∃u.

∀x(A→ ∃dxA),

∀x(A→nc ∃lxA),

∀ncx (A→ ∃rxA),

∀ncx (A→nc ∃uxA),

∃dxA→ ∀x(A→ P)→ P,

∃lxA→ ∀x(A→nc P)→ P,

∃rxA→ ∀ncx (A→ P)→ P,

∃uxA→nc ∀ncx (A→nc P)→ P.

Realizability interpretation

I Define a formula t r A, for A a formula and t a term

t r (A→ B) := ∀x(x r A → tx r B),

t r (A→nc B) := ∀x(x r A → t r B),

t r (∀xA) := ∀x(tx r A),

t r (∀ncx A) := ∀x(t r A).

I From a proof M we can extract its computational content, a
term et(M).

I Soundness theorem:
If M proves A, then et(M) r A can be proved.

Further work

Type-0 representation of (uniformly) continuous real functions:
“Read-Write tree”. Output signed digit after reading finitely many
(possibly 0) input signed digits, and carry on.

I Based on work of Ulrich Berger.

I Requires “nested” algebras and simultaneous
inductively/coinductively defined predicates.

I Details in forthcoming thesis of Kenji Miyamoto.

References

I U. Berger, From coinductive proofs to exact real arithmetic.
CSL 2009.

I H. Ishihara, A constructive closed graph theorem. 1990

I K. Miyamoto and H.S., Program extraction in exact real
arithmetic. MSCS 2012.

I K. Miyamoto, F. Nordvall Forsberg and H.S., Program
extraction from nested definitions. ITP 2013

I H.S. and S.S. Wainer, Proofs and Computations. Perspectives
in Logic, ASL & Cambridge UP, 2012.

